
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Improved Montgomery Multiplication

Trenton J. Grale
Diligentia Technology LLC

Austin, TX USA
trenton.grale@diligentiatech.com

Earl E. Swartzlander, Jr.
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX USA

eswartzla@aol.com

Abstract—The Montgomery multiplication algorithm is used
to perform multiplication coupled with modular reduction
without the need to employ a division operation. Serial
Montgomery implementations may operate at a bit, digit, or word
level. An established classification scheme for serial
implementations considers two dimensions: whether the
multiplication and reduction computations are separated or
integrated, and whether operand or product words are prioritized
for scanning. Presented here is an augmented version of the
taxonomy, which adds a third dimension. The new dimension
characterizes the degree of parallelism in performing low-level (bit
or digit) computations. Introducing a small degree of bit or digit
level parallelism to a formerly serial approach can enhance
performance, both through the typical benefit of parallel
computation, and by opportunistically avoiding unnecessary
computations. This can be achieved for a modest incremental cost
in increased area in lieu of the larger cost of realizing a fully
parallel solution. In this way, a new region on the latency-area
curve becomes available for tradeoff considerations. The novel
Rescheduled Montgomery Multiplier is presented as an
experimental realization of the augmented taxonomy.

Keywords—modular arithmetic, modular multiplication, digit
multiplication, Serial Montgomery Model, Rescheduled
Montgomery Multiplier

I. INTRODUCTION
Modular arithmetic with large operands is employed in

common public key cryptographic systems such as RSA and
ECC. Operations such as addition, subtraction, multiplication,
division, and exponentiation are performed, followed by
computing the modulus function on the result with respect to
some pre-selected modulus, which is often a prime number. The
Montgomery multiplication algorithm replaces division by the
arbitrary modulus M with division by a power of two, which is
simply a right shift [1]. The key to this method is the prior
transformation of the field elements into M-residues in what is
referred to as the Montgomery domain. Algorithm 1 lists the
steps in computing a Montgomery product.

Algorithm 1. Montgomery Multiplication [1].
Input: A, B
Output: P = ABR–1 mod M

1. T = AB T0 = T mod R
2. Q = T0M′ Q0 = Q mod R
3. U = Q0M

4. P = (T + U) / R
5. if (P > M):
6. P = P – M
7. end if
8. return P

Over the preceding three decades, a variety of Montgomery
multiplier implementations have been proposed. These
implementations have ranged from software to hardware, and
have included bit-serial, word-serial, and fully parallel designs.

Ordinary multiplication can be implemented with iterative
algorithms that operate on smaller portions of the operands.
Operands may be split into multiple words or digits. Then, the
arithmetic components can be smaller but operate in a reduced
cycle time. Taken to the extreme, operands may be processed at
the bit level. Bit implementations can have a bare minimum of
complexity and extremely short cycle time, at the cost of
performing a large number of iterations. Where operands are
divided into k digits, a total of k2 digit multiplications must be
performed in computing the product.

This paper is organized as follows. Section II reviews prior
serial Montgomery architectures and a widely employed
taxonomy for characterizing them. Section III proposes an
extension to the taxonomy. Section IV describes a novel
algorithm and hardware architecture for optimizing
Montgomery multiplication. Section V covers experimental
results. Finally, Section VI draws conclusions.

II. RELATED WORK

A. Previous Serial Architectures
H. Eberle, et al. describe a serial Montgomery architecture

that operates at the digit level [2]. Large operands are split into
k digits of size d, where k = én/dù. A single digit multiplier builds
up digit-word partial products sequentially. Reduction is
interleaved with partial product row computation. This approach
might be termed Montgomery Micro Reduction.

Großschädl, et al. present a bit-word serial multiplier [3].
This architecture operates on single bits of operand A (denoted
as ai) and the entire full-width operand B to compute bit-word
partial products. A partial product aiB can simply be computed
by a row of n AND gates. It is accumulated in place in a register
with the previous bit-word product. Montgomery reduction is
performed on each iteration of the running partial product Pi.
The quotient term is a single bit qi, which is used to gate the
modulus as qiM for the reduction step. No computation is

required to generate qi, because it can be shown mathematically
to resolve to bit 0 of the current partial product word Pi before
reduction.

An architecture presented by A. F. Tenca and Ç. K. Koç
employs a simple bit-digit multiplier [4], [5]. It computes a
sequence of bit-digit products to form a bit-word product.
Reduction occurs concurrently. Subsequent bit-word products
may be computed in a cascaded block or in the same block if the
previous bit-word product is fed back.

B. Koç Serial Montgomery Model
A taxonomy proposed by Koç, et al. is used to characterize

serial Montgomery algorithms [6]. Most research on
Montgomery multiplication references it and classifies proposed
architectures into one of its categories [3], [7], [8], [9], [10], [11],
[12], [13], [14], [15]. The taxonomy considers two dimensions.
The first dimension is reduction mode, and specifies whether
reduction is separated from or integrated with partial product
generation. Integrated reduction is further subdivided into
coarse and fine. The second dimension is digit scanning priority,
and specifies whether operand digits or product digits are
prioritized for scanning.

Algorithm 1 represents a trivial example of separated
reduction. The initial product T is first computed in full.
Subsequent computations of Q and U are then performed to
effect the reduction. Conversely, in integrated reduction, a
partial product is computed, and then a Montgomery reduction
is performed on it. This process continues for each partial
product, so that a series of partial products and reductions is
performed and the results accumulated into one final
Montgomery product.

Digit scanning may prioritize the digits of either the input
operands or of the product. The choice of priority affects the
order in which digits are read from the input operands and the
order in which product digits are written. If input operands are
given priority (operand scanning), then they are scanned in a
regular order. A partial product is built up from right to left. The
next partial product, accumulated with the previous one, starts
in the next higher digit position, rewriting product digits, so that
most product digits are written more than once. If product
scanning is employed, all computations that target a particular
product digit are executed close together in time, in adjacent
cycles or phases. The operands are scanned only for the digits
that will contribute to that targeted product digit. The i and j loop
bounds are adjusted such that all partial products accumulated to
a product digit occur in immediate succession. Once the product
digit is fully computed, it is not revisited; the product digits are
written in order as P[0], P[1], P[2], …, etc. Altogether the Koç,
et al. taxonomy lists five classifications. They are listed in Table
I.

TABLE I. KOÇ, ET AL. SERIAL MONTGOMERY MODEL [6]

Reduction Mode
Digit Scanning Priority

Operand Hybrid Product

Separated SOS

Integrated
Coarse CIOS CIHS

Fine FIOS FIPS

The first three cover operand scanning for both separated and
integrated reduction: Separated Operand Scanning (SOS),
Coarsely Integrated Operand Scanning (CIOS), and Finely
Integrated Operand Scanning (FIOS). Finely Integrated Product
Scanning (FIPS) prioritizes product digit scanning, and
integrates Montgomery reduction finely on a digit basis. There
is a hybrid method, which they term Coarsely Integrated Hybrid
Scanning (CIHS). It performs product scanning for the low word
of the full product, and then switches to operand scanning for
the integrated Montgomery reduction of the high word.

The Koç taxonomy provides useful expressions for
evaluating performance and storage requirements. To a first
order it assumes that both input operands are split in the same
way, i.e. that both are split into k digits of d bits each. It specifies
the number of digit operations that must be performed. These
operations include multiplication, addition, reads, and writes. In
all categories, the required number of digit multiplications is
2k2 + k, while additions, reads, and writes vary. Since digit
multiplications are performed serially, it follows that the
minimum number of cycles required to compute a Montgomery
product is 2k2 + k. The minimum storage requirements for most
categories is k + 3 digits, while for SOS it is 2k + 2.

C. Koç Classification of Previous Architectures
Table II lists pertinent characteristics of the Eberle,

Großschädl, and Tenca and Koç designs and their Koç
classifications.

TABLE II. MONTGOMERY ARCHITECTURE CLASSIFICATION

Architecture Base
Operand

Base
Ops. # Cycles

Koç
Classi-
fication

Eberle Digit 2k2 + k 2k2 + k CIOS
Großschädl Bit/word n n + k FIOSa
Tenca & Koç Bit/digit nk 2n + k – 1 FIOSa

aClosest fit.

The Eberle digit-based architecture integrates reduction
operations, once per each digit-word partial product, and may be
classified as Coarsely Integrated Operand Scanning (CIOS). In
the Großschädl architecture, priority is given to scanning the bits
of operand A in succession, and reduction is performed
combinationally (finely) during partial product computation.
Therefore it can be classified as FIOS. The Tenca and Koç
architecture scans the bits of operand A and the digits of operand
B, and performs reduction combinationally without a separate
reduction step. Therefore it also can be classified as FIOS.

III. EXTENDED SERIAL MONTGOMERY MODEL
Despite its wide acceptance, the serial Montgomery

taxonomy suffers from two limitations. It omits some possible
reduction and scanning combinations, and it neglects to consider
opportunities for parallelization, particularly at the digit level. A
major upgrade to the taxonomy broadens its reach and enhances
its utility.

Architectures that perform integrated reduction include both
operand and product scanning instances (CIOS, FIOS, CIHS,
FIPS). However, the category for separated reduction only
considers operand scanning (SOS). It is possible to devise
architectures which prioritize product scanning and still perform

reduction in a separated manner, as will be demonstrated below.
Accordingly, the taxonomy can be broadened to include a new
category denoted as Separated Product Scanning (SPS).

The serial Montgomery taxonomy can also be expanded to
encompass digit level parallelism. At present, the classification
scheme considers only serial realizations in which a single digit
multiplier or multiply-accumulate (MAC) unit performs each
multiplication in sequence. For operation phases that can be
parallelized, simply adding a second digit multiplier can cut
those phases’ latency in half at relatively low cost. Adding a
third dimension of digit level parallelism converts the taxonomy
from a flat surface to a large volume of descriptive and analytic
power.

Where multiple operand or product digits are being
processed concurrently, a more accurate term than digit
scanning would be digit scheduling. Each category from the
Serial Montgomery Model can be expanded to apply to
realizations with two or more digit multipliers. This is termed
the Extended Serial Montgomery Model. Table III lists the
categories from the improved classification scheme.

TABLE III. EXTENDED SERIAL MONTGOMERY MODEL

Reduction Mode
Digit Scanning Priority

Operand Hybrid Product

Separated SOS/m a SPS/mb

Integrated
Coarse CIOS/m CIHS/m a

Fine FIOS/m a FIPS/m
aReview of relevant literature has not revealed any architectures with these combinations.

bNew categories applicable to the Montgomery architecture proposed in this research.

Each scheduling method is split into two subcategories. One
column applies to the original category with no added
parallelism, which usually indicates a single instance of a digit
multiplier or MAC unit. The adjacent column applies where a
degree of digit level parallelism has been added. The category
abbreviation is suffixed with “/m,” where m indicates the
number (> 1) of instantiated digit multipliers. For example, a
CIOS architecture employing two digit multipliers would be
denoted as CIOS/2, for 2-digit parallelism. The new SPS and
SPS/m categories are also listed.

Adding the third dimension of digit level parallelism aids in
estimating performance and resource requirements, and permits
comparing two disparate architectures that employ it in different
ways. The unique characteristics and dependency relationships
of each architecture determine where digit parallelism can be
employed, and whether operand or product scanning is better.

For utility in making performance estimates, the categories
from the existing serial Montgomery taxonomy list the number
of cycles required assuming a single digit multiplier. Recall that
2k2 + k digit multiplications are required. Although it is possible
to construct an SPS architecture which also requires 2k2 + k
multiplications, the preferred realization uses 2.5k2 + 0.5k
multiplications. Despite a higher digit multiplication count, it
offers more opportunities for parallel optimization, partly
because of the dependency ordering. As a result, it can offer

higher performance than other categories with the same number
of digit multipliers. It is described in Section IV.

Employing m > 1 digit multipliers increases parallelism, but
only for those digit operations that can be performed
concurrently. Table IV lists the digit scheduling sequences for
selected categories for both the strictly serial mode (m = 1) and
modes with some degree of digit parallelism (m > 1).

TABLE IV. SELECTED EXTENDED SERIAL MONTGOMERY MODEL DIGIT
SCHEDULES AND CYCLES

Category Schedule Order # Cycles

SOS
m = 1 k2, k(1, k) 2k2 + k
m > 1 ék2/mù, k(1, ék/mù) ék2/mù + kék/mù + k

CIOS
m = 1 k(k, 1, k) 2k2 + k
m > 1 k(ék/mù, 1, ék/mù) 2kék/mù + k

FIOS m = 1 k[1, 1, 1, 2(k – 1)] 2k2 + k
m > 1 k[1, 1, 1, é2(k – 1)/mù] ké2(k – 1)/mù + 3k

SPS
m = 1 k2, (k2 + k)/2, k2 2.5k2 + 0.5k
m > 1 é[k2, (k2 + k)/2, k2]/mù é(2.5k2 + 0.5k)/mù

Schedule order for the proposed SPS category differs subtly
from that for SOS, CIOS, and FIOS. In those three categories,
the schedule follows a strict digit order that is imposed by partial
product/reduction dependency ordering. By contrast, the SPS
has only a macro level dependency order; there is no alternating
dependency chain of the form (partial product, reduction, partial
product, …). Because SPS employs product digit scheduling,
the phases may be overlapped to some degree. The dependency
order guarantees that all digit dependencies from one phase to
the next are available before the next phase begins, as long as m
£ k2.

To illustrate the degree to which certain categories can
benefit from digit parallelism, let k = 4 and consider SOS, CIOS,
FIOS, and the proposed SPS. The expressions in Table IV
determine how many cycles are required for different values of
m. Table V lists the cycle count for the respective categories for
m, where 1 £ m £ 5.

TABLE V. CYCLE COUNTS FOR SOS, CIOS, FIOS, AND SPS FOR K = 4
AND 1 £ M £ 5

m SOS CIOS FIOS SPS
1 36 36 36 42
2 20 20 24 21
3 18 20 20 14
4 12 12 20 11
5 12 12 20 9

The table shows the relative benefit of increasing digit
parallelism. For m = 1, categories SOS, CIOS, and FIOS all
require 36 cycles, whereas proposed SPS category is slower at
42 cycles. If m is increased to 2, SOS and CIOS improve to 20
cycles, SPS improves to 21 cycles, and FIOS only improves to
24 cycles. For m = 3 SOS requires 18 cycles, while CIOS and
FIOS both require 20 cycles. In this case, however, SPS is faster
than the other three in requiring only 14 cycles. For m = 4 and 5,
SPS continues to improve relative to the other three categories.

IV. MONTGOMERY ALGORITHM OPTIMIZATION
Closer examination of the Montgomery algorithm listed as

Algorithm 1 suggests a few possible ways to improve
performance. The steps include three multiplications, two
modulus functions, an addition, and a division which can be
computed as a simple right shift. Fig. 1 graphically illustrates
Algorithm 1, along with some annotations.

Fig. 1. Montgomery computation steps.

Step 1 computes an initial product T of M-residues A and B.
T’s upper and lower halves are designated as T1 and T0
respectively, and this is represented as T = (T1, T0). In Step 2, the
quotient Q is computed from T0 and M′. Only the lower half, Q0,
is used as the operand in the following step. In Step 3, the
reduction term U = (U1, U0) is computed. In Step 4, U is added
to the initial product T, followed by a divide by R (a right shift
by n bits where R = 2n) to compute the final Montgomery
product P.

Some potential optimizations are readily apparent. After T is
computed in Step 1, only its lower half, T0, is immediately
required by Step 2. T1 is not required until Step 4, so its
computation could be delayed or overlapped with Step 2.
Because Q1 is discarded at the end of Step 2, simply not
computing it would save time and energy. This property is rarely
mentioned explicitly in the literature; brief exceptions are found
in [3] and [16]. The Montgomery algorithm guarantees that in
Step 4 P0 will resolve to zero. It is only necessary to know
whether in Step 4 there would be a carry generated from the
addition of T0 and U0, to compute P1 correctly. Other research
that has acknowledged this is [17]. In fact, it is not even
necessary to add T0 and U0 at all. If T0 = 0, then Step 2 ensures
that Q0 = 0, and as a result U = 0 and therefore U0 = 0.
Conversely, if T0 ¹ 0, U0 is guaranteed to be nonzero. Because
P0 = T0 + U0 always resolves to zero, a carry into P1 = T1 + U1 is
invariably generated for T0 ¹ 0. Only P1 = T1 + U1 + 1 needs to
be computed. It is merely necessary in Step 4 to know whether
T0 is nonzero.

A. Rescheduled Montgomery Multiplication
Rescheduled Montgomery Multiplication enables efficient

computation of the Montgomery product by minimizing
unnecessary computations and deferring some other
computations. It completely separates product computation
from reduction at a macro level. Partial products are computed
and summed before reduction starts, similarly to a word-level
architecture, except that digit multiplication is used. It employs
the novel Separated Product Scheduling (SPS).

Using digit multiplication, computing T, Q, and U in
Algorithm 1 as full products would require 3k2 digit
multiplications. However, in the Rescheduled Montgomery

algorithm, the top half of the Q product (Q1) is not computed.
Fig. 2 illustrates the computation of Q0 for k = 2 digits. The
shaded areas indicate unused computations. The T[0]´M¢[1] and
T[1]´M¢[0] digit products are required for Q0, but their upper
halves are not used. Similarly T[1]´M¢[1] contributes only to Q1,
and so can be skipped altogether.

Fig. 2. Digit multiplication for Q.

The number of digit multiplications NQ to compute Q0 then
is as follows:

 NQ = (k2 + k)/2 (1)

Thus, the total number of digit multiplications NM for a
Montgomery product using the Rescheduled Montgomery
algorithm requires NP = k2 for each of T and U, and NQ for Q0:

 NM = 2k2 + NQ = 2.5k2 + 0.5k (2)

Despite requiring more digit multiplications than other
categories such as CIOS, FIOS, etc., the Rescheduled
Montgomery Multiplier exploits digit level parallelism more
efficiently using SPS. Because dependencies occur only at the
macro level between products T, Q0, and U, digit level
parallelism can be fully applied within a phase without
interruption by an intervening dependency. Furthermore,
interphase dependencies can be broken down into digit level
dependencies, which means that the start of the next phase can
overlap with the completion of the prior phase.

Fig. 3 illustrates the RMM digit multiplication and
accumulation schedule for k = 2 and using a single digit
multiplier (m = 1). Each row corresponds to a clock cycle. Digit
products appear on the left. To the right of each digit product are
the result digits that are being computed during that cycle. The
third column lists, in italics, the result digits that have been fully
computed in the previous cycles and are available in the
accumulator. Finally, the clock cycle count is shown in the
rightmost column.

Fig. 3. Digit product scheduling for k = 2, m = 1.

The figure shows the three phases in which the same
hardware is reused: T in Cycles 0-3, Q0 in Cycles 4-6, and finally
U in Cycles 7-10. For k = 2 and m = 1, computing the
Montgomery product requires only 11 instead of 12 digit
multiplications, or about 91.7%.

Dividing operands into a larger number of smaller digits
increases granularity, which permits eliminating a higher
percentage of digit multiplications that would otherwise
contribute to Q1. In the example above, a full product requires
22 = 4 digit multiplications, while Q0 only requires 3, or 75%. In
the overall scheme, the savings from reducing Q1 computations
approaches 17% with increasing k. Employing a plurality of
multipliers permits concurrent digit product scheduling for
increased parallelism and lower latency. At the same time, the
increased granularity afforded by digit multiplication to
minimize Q0 computations remains.

B. Architecture
The proposed architecture consists of a four-stage pipeline

with stages designated as Load (L), Multiply (M), Accumulate
(A), and Final Sum. Partial products are computed in the first
three stages, LMA. In Load, the input operands are selected and
loaded into the digit multiplier input registers. In Multiply, the
actual digit multiplication occurs and is written to the digit
multiplier output register. Finally, in Accumulate, the digit
partial product, with appropriate bit offset, is summed with the
accumulator. Fig. 4 depicts a pipeline diagram of the LMA
stages for k = 2, m = 1.

Fig. 4. RMM pipeline for k = 2, m = 1.

Fig. 5 depicts the microarchitecture. The Load stage consists
of n-bit input registers A, B, M¢, and M, and selection logic.
These registers and the output of the accumulator are
multiplexed at the inputs to one or more digit multipliers, which
comprise the Multiply stage. Each digit multiplier has two d-bit
input registers X and Y and computes a 2d-bit digit product P in
one clock cycle. This is the critical timing path of the entire
design because of the large size of the digits. Next, Accumulate
adds the digit products to the contents of the accumulator
register ACCUM. Lastly, the Final Sum stage computes the
reduction. This stage is only active after all the intermediate
operands T, Q0, and U have been fully computed in the LMA
pipeline.

The accumulator data path is designed to minimize carry
chain delays. As much as is practicable for a given (k, m)
configuration, the same accumulation schedule is used for the
three T, Q0, and U computation phases. This maximizes gate
reuse and minimizes combinational area growth in the
accumulator datapath.

Fig. 5. Rescheduled Montgomery Multiplier architecture.

V. RESULTS
Several variants of the RMM architecture were designed,

with a varying number of digits k, and of digit multipliers m. In
all cases, the operand size n was set to 256, or to a nearby value
to permit a split into k uniform digits each. k was varied from 2
to 8. Depending on k, m was varied from 1 to 14.

Other architectures were also designed for comparison
purposes. At one end of size scale, the Eberle, Großschädl, and
Tenca and Koç designs comprised the relatively small, intensely
iterative realizations. At the other end, various designs that
operate on full word-size operands were also built. These
included a basic 256´256 synthesized multiplier, and variants
(both fully parallel and pipelined versions) of the Montgomery
algorithm realized directly in hardware. Other large designs that
were implemented included a pipelined Karatsuba-Ofman
multiplier [18] and a pipelined arithmetic processor proposed by
McIvor, et al. in [19].

All designs were written in Verilog HDL and synthesized
using Synopsys Design Compiler in the Nangate 45 nm research
library [20]. Static timing analysis was performed with
Synopsys PrimeTime.

Fig. 6 plots latency versus area for all RMM
implementations. The Pareto frontier for area-latency tradeoff is
indicated.

Fig. 6. RMM latency versus area with Pareto frontier.

Table VI summarizes the results for RMM instances which
lie on the Pareto frontier of the latency-area plot, ordered by
area.

TABLE VI. RMM RESULTS (PARETO FRONTIER)

d (k, m) Area
(µm2)

Per.
(ns)

f
(MHz)

Cyc.

Total
Latency

(ns)

A×L
Prod.

86 (3, 1) 66.4k 1.969 508 28 55.1 3.66
64 (4, 2) 76.9k 1.910 524 25 47.8 3.67
64 (4, 3) 102.0k 1.881 532 19 35.7 3.64

128 (2, 1) 105.7k 2.217 451 15 33.3 3.52
86 (3, 2) 114.6k 2.013 497 16 32.2 3.69
52 (5, 5) 118.5k 1.794 557 17 30.5 3.61
64 (4, 4) 120.6k 1.881 532 15 28.2 3.40
37 (7, 10) 130.9k 1.625 615 17 27.6 3.62
43 (6, 8) 132.0k 1.694 590 16 27.1 3.58
32 (8, 13) 133.7k 1.547 646 17 26.3 3.52
43 (6, 9) 137.6k 1.666 600 15 25.0 3.44
64 (4, 5) 144.9k 1.904 525 13 24.8 3.59
86 (3, 3) 146.1k 2.002 500 12 24.0 3.51
43 (6, 10) 152.4k 1.677 596 14 23.5 3.58

128 (2, 2) 188.4k 2.217 451 10 22.2 4.18

Of course, increasing area generally purchases a reduction in
latency. The trend is not monotonic, because other variables in
the architecture and scheduling contribute to achievable
performance, beyond aggregate area. This is evident from the
variations in achievable latency in the central region of the plot.
Between 110k µm2 and 145k µm2 there are 16 configurations
that are not at Pareto minimum.

For k Î {3, 4, 5}, configurations in which m = k have the
lowest area-latency product for that k. For example, the RMM
(4, 4) area-latency product is the minimum of all RMM (4, m)
configurations, at 3.40. This implementation requires 121k µm2
and has a latency of 28 ns. Considering other k = 4
configurations, it is possible to reduce area to just over 100k µm2
by switching to RMM (4, 3) for a 16% area reduction and 8 ns
(29%) of additional latency. In the opposite direction, the (4, 5)
configuration saves 3 ns (11%) of latency (speedup = 1.12) but
at an additional area cost of over 20k µm2, 20% larger. For the
smaller digit sizes in which the operands are subdivided into 6
to 8 digits, the minimum area-latency product is achieved closer
to m = 1.5k. For example, for k = 6, the minimum area-latency
product of 3.44 is obtained configuration (6, 9).

A few reasons for this shift include the following. As the
digit size d decreases and the number of digits k increases, the
number of digit multiplications increases quadratically relative
to k. More digit multipliers are required to keep the number of
cycles under control. RMM (5, 5) computes a result in 17 cycles
of about 1.8 ns each in 118k µm2. For RMM (6, 6), although the
clock period improves to about 1.7 ns, the number of cycles
jumps to 20, an 18% increase, in an area of 114k µm2. RMM
(5, 5) has 52´52´5 = 13,520 digit multiplication bits in flight,
whereas RMM (6, 6) has 43´43´6 = 11,094 bits in flight. This
is a lower degree of digit level parallelism. Conversely, RMM
(6, 9) only requires 15 cycles (25 ns) in 138k µm2, because it has
16,641 bits in flight in any given multiplication cycle. Increasing
the number of multipliers with large digits is costly because
those multipliers are relatively large. With small digits, adding
another multiplier results in a marginal increase in area but
improves performance by reducing cycles.

The latency-area curves of Fig. 6 suggest that a point of
diminishing returns has been reached with respect to further

increases in k. Using an increasing number k of smaller digits
becomes more costly relative to less complex designs, despite
the fact that the smaller digits permit a higher granularity in
computing Q0 more efficiently. The quadratic relationship of the
number of digit multiplications to k means that m must also grow
quadratically to keep cycle count down. Although the timing
paths within the smaller digit multipliers are shorter, the
accumulator logic complexity must grow to handle more
vertically stacked digit products.

Fig. 7 plots latency versus area for the serial architectures
along with several configurations of the Rescheduled
Montgomery Multiplier.

Fig. 7. Latency versus area, serial architectures and RMM.

The serial architectures are clustered near the left side of the
plot with low areas and varied latencies, while the RMM
architectures vary in size but all have very low latencies. The
Eberle, Tenca and Koç, and Großschädl serial designs have
areas on the order of 23k µm2 or less. The latencies of the Eberle
and Tenca designs are over 400 ns, approaching 2,800 ns for the
worst Eberle instance. Operating at the bit or digit level requires
a substantial number of clock cycles, and this tends to
overwhelm any performance benefit of reduced cycle time
resulting from less complex logic. In contrast, the Großschädl
architecture, while still small on the order of 20k µm2, has
latencies all clustered just above 200 ns. The three
configurations built compute the Montgomery product
identically, and the only difference is the size of the final digit
multiplier used for converting the carry save result to
nonredundant form. This architecture gives the best
performance for area among the serial designs, with area-latency
products under 5. The RMM designs all have latencies on the
order of 50 ns and less, but area varies widely. The smallest
RMM is just over three times the size of the Großschädl
architectures, but is five times as fast. Fig. 8 plots the results of
all designs. The latency axis uses a logarithmic scale.

Fig. 8. Latency versus area for implemented Montgomery multipliers.

The plot shows the area versus latency points for all the
architectures, along with two curves fit to those points. The
dashed line is the curve fit for the points of the prior architectures
but excludes the proposed Rescheduled Montgomery Multiplier
results. It has a downward slope from the serial architectures to
the full size architectures. The solid line shows the curve fit to
all points, including the RMM architectures. The RMM
latencies fall well below the original, dashed curve fit. Within
the context of the architectures that were implemented, it
suggests that the RMM establishes a new minimum on the
Pareto frontier of the latency-area plot.

VI. CONCLUSIONS
This research presents the Extended Serial Montgomery

Model, a fundamental expansion of an established taxonomy for
categorizing serial realizations of the Montgomery algorithm.
The extension adds comprehension of digit level parallelism; it
permits the designer to assess the performance and area effects
of employing a variable degree of digit level parallelism in an
otherwise serial architecture. It also augments the prior
taxonomy with a new type of digit scheduling termed Separated
Product Scheduling (SPS). Finally, it provides expressions to
estimate performance by accounting for the number of digit
multiplications, dependency relationships, and the number of
digit multipliers.

A novel hardware architecture for Montgomery
multiplication, termed the Rescheduled Montgomery Multiplier
(RMM), is presented. The architecture synthesizes techniques
from multiple sources. It borrows the concept of digit
multiplication from serial approaches, and augments it by
exploiting digit level parallelism to compute multiple digit
products concurrently. Employing the novel SPS approach, it
orders digit multiplications to simplify the dependency chain
and to minimize stalls and resource underutilization. The digit-
centric approach allows it to exploit opportunities in the
canonical Montgomery algorithm to eliminate unnecessary
computation. This brings two benefits: reducing the number of
digit multiplications that must be performed, and permitting
opportunistic deferral of some digit multiplications until later in
the process. Moreover, it permits a greater degree of

parallelization, and a wider range of parallelization options, than
are available to prior serial architectures.

The RMM establishes a new region of possible area-latency
tradeoffs between, on the one hand, small digit- or bit-oriented
serial architectures, and large word-size architectures that
perform the canonical Montgomery algorithm in a more
conventional way.

REFERENCES
[1] P. L. Montgomery, “Modular Multiplication without Trial Division,”

Mathematics of Computation, vol. 44, no. 170, pp. 519-521, April 1985.
[2] H. Eberle, N. Gura, S. Chang-Shantz, V. Gupta, and L. Rarick, “A Public-

key Cryptographic Processor for RSA and ECC,” Proc. 15th IEEE Conf.
Appl.-Specific Syst., Arch., and Processors (ASAP’04), 2004.

[3] J. Großschädl, E. Savas, and K. Yumbul, “Realizing Arbitrary-Precision
Modular Multiplication with a Fixed-Precision Multiplier Datapath,”
Proc. 2009 International Conference on Reconfigurable Computing and
FPGAs, pp. 261-266, Cancun, Mexico, December 9-11, 2009.

[4] A. F. Tenca and Ç. K. Koç, “A Scalable Architecture for Montgomery
Multiplication,” Proc. 1st International Workshop on Cryptographic
Hardware and Embedded Systems (CHES ’99), Lecture Notes in
Computer Science (LNCS), vol. 1717, pp. 94-108, Worcester, MA,
August 12-13, 1999.

[5] A. F. Tenca and Ç. K. Koç, “A Scalable Architecture for Modular
Multiplication Based on Montgomery’s Algorithm,” IEEE Trans.
Computers, vol. 52, no. 9, pp. 1215-1221, September 2003.

[6] Ç. K. Koç, T. Acar, and B. S. Kaliski, Jr., “Analyzing and Comparing
Montgomery Multiplication Algorithms,” IEEE Micro, vol. 16, no. 3, pp.
26-33, June 1996.

[7] C. McIvor, M. McLoone, and J. V. McCanny, “Improved Montgomery
Modular Inverse Algorithm,” Electronics Letters, vol. 40, no. 18, pp.
1110-1112, September 2, 2004.

[8] G. Gallin and A. Tisserand, “Generation of Finely-Pipelined GF(P)
Multipliers for Flexible Curve Based Cryptography on FPGAs,” IEEE
Trans. Computers, vol. 68, no. 11, pp. 1612-1622, November 2019.

[9] A. F. Tenca and Ç. K. Koç, “A Scalable Architecture for Montgomery
Multiplication,” Proc. 1st International Workshop on Cryptographic
Hardware and Embedded Systems (CHES ’99), Lecture Notes in
Computer Science (LNCS), vol. 1717, pp. 94-108, Worcester, MA,
August 12-13, 1999.

[10] A. F. Tenca and Ç. K. Koç, “A Scalable Architecture for Modular
Multiplication Based on Montgomery’s Algorithm,” IEEE Trans.
Computers, vol. 52, no. 9, pp. 1215-1221, September 2003.

[11] M. Q. Huang, K. Gaj, and T. El-Ghazawi, “New Hardware Architectures
for Montgomery Modular Multiplication Algorithm,” IEEE Trans.
Computers, vol. 60, no. 7, pp. 923-935, July 2011.

[12] A. F. Tenca, G. Todorov, and Ç. K. Koç, “High-Radix Design of a
Scalable Modular Multiplier,” Proc. Third International Workshop on
Cryptographic Hardware and Embedded Systems (CHES ’01), Lecture
Notes in Computer Science (LNCS), vol. 2162, pp. 185-201, Paris, France,
May 14-16, 2001.

[13] E. Savas, A. F. Tenca, M. E. Çiftçibasi, and Ç. K. Koç, “Multiplier
Architectures for GF(p) and GF(2n),” IEE Proc. – Computers and Dig.
Techniques, vol. 151, no. 2, pp. 147-160, March 2004.

[14] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu, “An
Improved Unified Scalable Radix-2 Montgomery Multiplier,” Proc. 17th
IEEE Symposium on Computer Arithmetic (ARITH ’05), pp. 172-178,
Cape Cod, MA, June 27-29, 2005.

[15] Gabriel Gallin and Arnaud Tisserand, “Hyper-Threaded Multiplier for
HECC,” 51st Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, October 29-November 1, 2017, pp. 447-451.

[16] R. R. Liu and S. G. Li, “A Design and Implementation of Montgomery
Modular Multiplier,” 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-4.

[17] J. N. Ding and S. G. Li, “Broken-Karatsuba Multiplication and Its
Application to Montgomery Modular Multiplication,” Proc. 27th

International Conference on Field Programmable Logic and Applications
(FPL), Ghent, Belgium, September 4-6, 2017.

[18] A. Karatsuba and Yu. Ofman, “Multiplication of Multidigit Numbers on
Automata,” Proc. USSR Academy of Sciences, vol. 145, no. 2, pp. 293-
294, July 1962. Translation by USSR Academy of Sciences, 1962 from:
А. Карацуба и Ю. Офман, «Умножение многозначных чисел на
автоматах», Докл. Академии Наук СССР, 1962 г., том 145, № 2, с. 293-
294.

[19] C. McIvor, M. McLoone, and J. V. McCanny, “Hardware Elliptic Curve
Cryptographic Processor over GF(p),” IEEE Trans. Circuits and Systems
I—Regular Papers, vol. 53, no. 9, pp. 1946-1957, September 2006.

[20] Nangate FreePDK45 Generic Open Cell Library,
http://projects.si2.org/openeda.si2.org/projects/nangatelib.

