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Abstract—The Montgomery multiplication algorithm is used 
to perform multiplication coupled with modular reduction 
without the need to employ a division operation. Serial 
Montgomery implementations may operate at a bit, digit, or word 
level. An established classification scheme for serial 
implementations considers two dimensions: whether the 
multiplication and reduction computations are separated or 
integrated, and whether operand or product words are prioritized 
for scanning. Presented here is an augmented version of the 
taxonomy, which adds a third dimension. The new dimension 
characterizes the degree of parallelism in performing low-level (bit 
or digit) computations. Introducing a small degree of bit or digit 
level parallelism to a formerly serial approach can enhance 
performance, both through the typical benefit of parallel 
computation, and by opportunistically avoiding unnecessary 
computations. This can be achieved for a modest incremental cost 
in increased area in lieu of the larger cost of realizing a fully 
parallel solution. In this way, a new region on the latency-area 
curve becomes available for tradeoff considerations. The novel 
Rescheduled Montgomery Multiplier is presented as an 
experimental realization of the augmented taxonomy. 

Keywords—modular arithmetic, modular multiplication, digit 
multiplication, Serial Montgomery Model, Rescheduled 
Montgomery Multiplier 

I. INTRODUCTION 
Modular arithmetic with large operands is employed in 

common public key cryptographic systems such as RSA and 
ECC. Operations such as addition, subtraction, multiplication, 
division, and exponentiation are performed, followed by 
computing the modulus function on the result with respect to 
some pre-selected modulus, which is often a prime number. The 
Montgomery multiplication algorithm replaces division by the 
arbitrary modulus M with division by a power of two, which is 
simply a right shift [1]. The key to this method is the prior 
transformation of the field elements into M-residues in what is 
referred to as the Montgomery domain. Algorithm 1 lists the 
steps in computing a Montgomery product. 

 

Algorithm 1. Montgomery Multiplication [1]. 
Input: A, B 
Output: P = ABR–1 mod M 
 
1. T = AB T0 = T mod R 
2. Q = T0M′ Q0 = Q mod R 
3. U = Q0M 

4. P = (T + U) / R 
5. if (P > M): 
6.  P = P – M 
7. end if 
8. return P 

Over the preceding three decades, a variety of Montgomery 
multiplier implementations have been proposed. These 
implementations have ranged from software to hardware, and 
have included bit-serial, word-serial, and fully parallel designs. 

Ordinary multiplication can be implemented with iterative 
algorithms that operate on smaller portions of the operands. 
Operands may be split into multiple words or digits. Then, the 
arithmetic components can be smaller but operate in a reduced 
cycle time. Taken to the extreme, operands may be processed at 
the bit level. Bit implementations can have a bare minimum of 
complexity and extremely short cycle time, at the cost of 
performing a large number of iterations. Where operands are 
divided into k digits, a total of k2 digit multiplications must be 
performed in computing the product. 

This paper is organized as follows. Section II reviews prior 
serial Montgomery architectures and a widely employed 
taxonomy for characterizing them. Section III proposes an 
extension to the taxonomy. Section IV describes a novel 
algorithm and hardware architecture for optimizing 
Montgomery multiplication. Section V covers experimental 
results. Finally, Section VI draws conclusions. 

II. RELATED WORK 

A. Previous Serial Architectures 
H. Eberle, et al. describe a serial Montgomery architecture 

that operates at the digit level [2]. Large operands are split into 
k digits of size d, where k = én/dù. A single digit multiplier builds 
up digit-word partial products sequentially. Reduction is 
interleaved with partial product row computation. This approach 
might be termed Montgomery Micro Reduction. 

Großschädl, et al. present a bit-word serial multiplier [3]. 
This architecture operates on single bits of operand A (denoted 
as ai) and the entire full-width operand B to compute bit-word 
partial products. A partial product aiB can simply be computed 
by a row of n AND gates. It is accumulated in place in a register 
with the previous bit-word product. Montgomery reduction is 
performed on each iteration of the running partial product Pi. 
The quotient term is a single bit qi, which is used to gate the 
modulus as qiM for the reduction step. No computation is 



required to generate qi, because it can be shown mathematically 
to resolve to bit 0 of the current partial product word Pi before 
reduction. 

An architecture presented by A. F. Tenca and Ç. K. Koç 
employs a simple bit-digit multiplier [4], [5]. It computes a 
sequence of bit-digit products to form a bit-word product. 
Reduction occurs concurrently. Subsequent bit-word products 
may be computed in a cascaded block or in the same block if the 
previous bit-word product is fed back. 

B. Koç Serial Montgomery Model 
A taxonomy proposed by Koç, et al. is used to characterize 

serial Montgomery algorithms [6]. Most research on 
Montgomery multiplication references it and classifies proposed 
architectures into one of its categories [3], [7], [8], [9], [10], [11], 
[12], [13], [14], [15]. The taxonomy considers two dimensions. 
The first dimension is reduction mode, and specifies whether 
reduction is separated from or integrated with partial product 
generation. Integrated reduction is further subdivided into 
coarse and fine. The second dimension is digit scanning priority, 
and specifies whether operand digits or product digits are 
prioritized for scanning. 

Algorithm 1 represents a trivial example of separated 
reduction. The initial product T is first computed in full. 
Subsequent computations of Q and U are then performed to 
effect the reduction. Conversely, in integrated reduction, a 
partial product is computed, and then a Montgomery reduction 
is performed on it. This process continues for each partial 
product, so that a series of partial products and reductions is 
performed and the results accumulated into one final 
Montgomery product. 

Digit scanning may prioritize the digits of either the input 
operands or of the product. The choice of priority affects the 
order in which digits are read from the input operands and the 
order in which product digits are written. If input operands are 
given priority (operand scanning), then they are scanned in a 
regular order. A partial product is built up from right to left. The 
next partial product, accumulated with the previous one, starts 
in the next higher digit position, rewriting product digits, so that 
most product digits are written more than once. If product 
scanning is employed, all computations that target a particular 
product digit are executed close together in time, in adjacent 
cycles or phases. The operands are scanned only for the digits 
that will contribute to that targeted product digit. The i and j loop 
bounds are adjusted such that all partial products accumulated to 
a product digit occur in immediate succession. Once the product 
digit is fully computed, it is not revisited; the product digits are 
written in order as P[0], P[1], P[2], …, etc. Altogether the Koç, 
et al. taxonomy lists five classifications. They are listed in Table 
I. 

TABLE I.  KOÇ, ET AL. SERIAL MONTGOMERY MODEL [6] 

Reduction Mode 
Digit Scanning Priority 

Operand Hybrid Product 

Separated SOS   

Integrated 
Coarse CIOS CIHS  

Fine FIOS  FIPS 

The first three cover operand scanning for both separated and 
integrated reduction: Separated Operand Scanning (SOS), 
Coarsely Integrated Operand Scanning (CIOS), and Finely 
Integrated Operand Scanning (FIOS). Finely Integrated Product 
Scanning (FIPS) prioritizes product digit scanning, and 
integrates Montgomery reduction finely on a digit basis. There 
is a hybrid method, which they term Coarsely Integrated Hybrid 
Scanning (CIHS). It performs product scanning for the low word 
of the full product, and then switches to operand scanning for 
the integrated Montgomery reduction of the high word. 

The Koç taxonomy provides useful expressions for 
evaluating performance and storage requirements. To a first 
order it assumes that both input operands are split in the same 
way, i.e. that both are split into k digits of d bits each. It specifies 
the number of digit operations that must be performed. These 
operations include multiplication, addition, reads, and writes. In 
all categories, the required number of digit multiplications is 
2k2 + k, while additions, reads, and writes vary. Since digit 
multiplications are performed serially, it follows that the 
minimum number of cycles required to compute a Montgomery 
product is 2k2 + k. The minimum storage requirements for most 
categories is k + 3 digits, while for SOS it is 2k + 2. 

C. Koç Classification of Previous Architectures 
Table II lists pertinent characteristics of the Eberle, 

Großschädl, and Tenca and Koç designs and their Koç 
classifications. 

TABLE II.  MONTGOMERY ARCHITECTURE CLASSIFICATION 

Architecture Base 
Operand 

# Base 
Ops. # Cycles 

Koç 
Classi-
fication 

Eberle Digit 2k2 + k 2k2 + k CIOS 
Großschädl Bit/word n n + k FIOSa 
Tenca & Koç Bit/digit nk 2n + k – 1 FIOSa 

aClosest fit. 

The Eberle digit-based architecture integrates reduction 
operations, once per each digit-word partial product, and may be 
classified as Coarsely Integrated Operand Scanning (CIOS). In 
the Großschädl architecture, priority is given to scanning the bits 
of operand A in succession, and reduction is performed 
combinationally (finely) during partial product computation. 
Therefore it can be classified as FIOS. The Tenca and Koç 
architecture scans the bits of operand A and the digits of operand 
B, and performs reduction combinationally without a separate 
reduction step. Therefore it also can be classified as FIOS. 

III. EXTENDED SERIAL MONTGOMERY MODEL 
Despite its wide acceptance, the serial Montgomery 

taxonomy suffers from two limitations. It omits some possible 
reduction and scanning combinations, and it neglects to consider 
opportunities for parallelization, particularly at the digit level. A 
major upgrade to the taxonomy broadens its reach and enhances 
its utility. 

Architectures that perform integrated reduction include both 
operand and product scanning instances (CIOS, FIOS, CIHS, 
FIPS). However, the category for separated reduction only 
considers operand scanning (SOS). It is possible to devise 
architectures which prioritize product scanning and still perform 



reduction in a separated manner, as will be demonstrated below. 
Accordingly, the taxonomy can be broadened to include a new 
category denoted as Separated Product Scanning (SPS). 

The serial Montgomery taxonomy can also be expanded to 
encompass digit level parallelism. At present, the classification 
scheme considers only serial realizations in which a single digit 
multiplier or multiply-accumulate (MAC) unit performs each 
multiplication in sequence. For operation phases that can be 
parallelized, simply adding a second digit multiplier can cut 
those phases’ latency in half at relatively low cost. Adding a 
third dimension of digit level parallelism converts the taxonomy 
from a flat surface to a large volume of descriptive and analytic 
power. 

Where multiple operand or product digits are being 
processed concurrently, a more accurate term than digit 
scanning would be digit scheduling. Each category from the 
Serial Montgomery Model can be expanded to apply to 
realizations with two or more digit multipliers. This is termed 
the Extended Serial Montgomery Model. Table III lists the 
categories from the improved classification scheme. 

TABLE III.  EXTENDED SERIAL MONTGOMERY MODEL 

Reduction Mode 
Digit Scanning Priority 

Operand Hybrid Product 

Separated SOS/m a SPS/mb 

Integrated 
Coarse CIOS/m CIHS/m a 

Fine FIOS/m a FIPS/m 
aReview of relevant literature has not revealed any architectures with these combinations. 

bNew categories applicable to the Montgomery architecture proposed in this research. 

 

Each scheduling method is split into two subcategories. One 
column applies to the original category with no added 
parallelism, which usually indicates a single instance of a digit 
multiplier or MAC unit. The adjacent column applies where a 
degree of digit level parallelism has been added. The category 
abbreviation is suffixed with “/m,” where m indicates the 
number (> 1) of instantiated digit multipliers. For example, a 
CIOS architecture employing two digit multipliers would be 
denoted as CIOS/2, for 2-digit parallelism. The new SPS and 
SPS/m categories are also listed. 

Adding the third dimension of digit level parallelism aids in 
estimating performance and resource requirements, and permits 
comparing two disparate architectures that employ it in different 
ways. The unique characteristics and dependency relationships 
of each architecture determine where digit parallelism can be 
employed, and whether operand or product scanning is better. 

For utility in making performance estimates, the categories 
from the existing serial Montgomery taxonomy list the number 
of cycles required assuming a single digit multiplier. Recall that 
2k2 + k digit multiplications are required. Although it is possible 
to construct an SPS architecture which also requires 2k2 + k 
multiplications, the preferred realization uses 2.5k2 + 0.5k 
multiplications. Despite a higher digit multiplication count, it 
offers more opportunities for parallel optimization, partly 
because of the dependency ordering. As a result, it can offer 

higher performance than other categories with the same number 
of digit multipliers. It is described in Section IV. 

Employing m > 1 digit multipliers increases parallelism, but 
only for those digit operations that can be performed 
concurrently. Table IV lists the digit scheduling sequences for 
selected categories for both the strictly serial mode (m = 1) and 
modes with some degree of digit parallelism (m > 1). 

TABLE IV.  SELECTED EXTENDED SERIAL MONTGOMERY MODEL DIGIT 
SCHEDULES AND CYCLES 

Category Schedule Order # Cycles 

SOS 
m = 1 k2, k(1, k) 2k2 + k 
m > 1 ék2/mù, k(1, ék/mù) ék2/mù + kék/mù + k 

CIOS 
m = 1 k(k, 1, k) 2k2 + k 
m > 1 k(ék/mù, 1, ék/mù) 2kék/mù + k 

FIOS m = 1 k[1, 1, 1, 2(k – 1)] 2k2 + k 
m > 1 k[1, 1, 1, é2(k – 1)/mù] ké2(k – 1)/mù + 3k 

SPS 
m = 1 k2, (k2 + k)/2, k2 2.5k2 + 0.5k 
m > 1 é[k2, (k2 + k)/2, k2]/mù é(2.5k2 + 0.5k)/mù 

 

Schedule order for the proposed SPS category differs subtly 
from that for SOS, CIOS, and FIOS. In those three categories, 
the schedule follows a strict digit order that is imposed by partial 
product/reduction dependency ordering. By contrast, the SPS 
has only a macro level dependency order; there is no alternating 
dependency chain of the form (partial product, reduction, partial 
product, …). Because SPS employs product digit scheduling, 
the phases may be overlapped to some degree. The dependency 
order guarantees that all digit dependencies from one phase to 
the next are available before the next phase begins, as long as m 
£ k2. 

To illustrate the degree to which certain categories can 
benefit from digit parallelism, let k = 4 and consider SOS, CIOS, 
FIOS, and the proposed SPS. The expressions in Table IV 
determine how many cycles are required for different values of 
m. Table V lists the cycle count for the respective categories for 
m, where 1 £ m £ 5. 

TABLE V.  CYCLE COUNTS FOR SOS, CIOS, FIOS, AND SPS FOR K = 4 
AND 1 £ M £ 5 

m SOS CIOS FIOS SPS 
1 36 36 36 42 
2 20 20 24 21 
3 18 20 20 14 
4 12 12 20 11 
5 12 12 20 9 

 

The table shows the relative benefit of increasing digit 
parallelism. For m = 1, categories SOS, CIOS, and FIOS all 
require 36 cycles, whereas proposed SPS category is slower at 
42 cycles. If m is increased to 2, SOS and CIOS improve to 20 
cycles, SPS improves to 21 cycles, and FIOS only improves to 
24 cycles. For m = 3 SOS requires 18 cycles, while CIOS and 
FIOS both require 20 cycles. In this case, however, SPS is faster 
than the other three in requiring only 14 cycles. For m = 4 and 5, 
SPS continues to improve relative to the other three categories. 



IV. MONTGOMERY ALGORITHM OPTIMIZATION 
Closer examination of the Montgomery algorithm listed as 

Algorithm 1 suggests a few possible ways to improve 
performance. The steps include three multiplications, two 
modulus functions, an addition, and a division which can be 
computed as a simple right shift. Fig. 1 graphically illustrates 
Algorithm 1, along with some annotations. 

Fig. 1. Montgomery computation steps. 

Step 1 computes an initial product T of M-residues A and B. 
T’s upper and lower halves are designated as T1 and T0 
respectively, and this is represented as T = (T1, T0). In Step 2, the 
quotient Q is computed from T0 and M′. Only the lower half, Q0, 
is used as the operand in the following step. In Step 3, the 
reduction term U = (U1, U0) is computed. In Step 4, U is added 
to the initial product T, followed by a divide by R (a right shift 
by n bits where R = 2n) to compute the final Montgomery 
product P. 

Some potential optimizations are readily apparent. After T is 
computed in Step 1, only its lower half, T0, is immediately 
required by Step 2. T1 is not required until Step 4, so its 
computation could be delayed or overlapped with Step 2. 
Because Q1 is discarded at the end of Step 2, simply not 
computing it would save time and energy. This property is rarely 
mentioned explicitly in the literature; brief exceptions are found 
in [3] and [16]. The Montgomery algorithm guarantees that in 
Step 4 P0 will resolve to zero. It is only necessary to know 
whether in Step 4 there would be a carry generated from the 
addition of T0 and U0, to compute P1 correctly. Other research 
that has acknowledged this is [17]. In fact, it is not even 
necessary to add T0 and U0 at all. If T0 = 0, then Step 2 ensures 
that Q0 = 0, and as a result U = 0 and therefore U0 = 0. 
Conversely, if T0 ¹ 0, U0 is guaranteed to be nonzero. Because 
P0 = T0 + U0 always resolves to zero, a carry into P1 = T1 + U1 is 
invariably generated for T0 ¹ 0. Only P1 = T1 + U1 + 1 needs to 
be computed. It is merely necessary in Step 4 to know whether 
T0 is nonzero. 

A. Rescheduled Montgomery Multiplication 
Rescheduled Montgomery Multiplication enables efficient 

computation of the Montgomery product by minimizing 
unnecessary computations and deferring some other 
computations. It completely separates product computation 
from reduction at a macro level. Partial products are computed 
and summed before reduction starts, similarly to a word-level 
architecture, except that digit multiplication is used. It employs 
the novel Separated Product Scheduling (SPS). 

Using digit multiplication, computing T, Q, and U in 
Algorithm 1 as full products would require 3k2 digit 
multiplications. However, in the Rescheduled Montgomery 

algorithm, the top half of the Q product (Q1) is not computed. 
Fig. 2 illustrates the computation of Q0 for k = 2 digits. The 
shaded areas indicate unused computations. The T[0]´M¢[1] and 
T[1]´M¢[0] digit products are required for Q0, but their upper 
halves are not used. Similarly T[1]´M¢[1] contributes only to Q1, 
and so can be skipped altogether. 

Fig. 2. Digit multiplication for Q. 

The number of digit multiplications NQ to compute Q0 then 
is as follows: 

 NQ = (k2 + k)/2 (1) 

Thus, the total number of digit multiplications NM for a 
Montgomery product using the Rescheduled Montgomery 
algorithm requires NP = k2 for each of T and U, and NQ for Q0: 

 NM = 2k2 + NQ = 2.5k2 + 0.5k (2) 

Despite requiring more digit multiplications than other 
categories such as CIOS, FIOS, etc., the Rescheduled 
Montgomery Multiplier exploits digit level parallelism more 
efficiently using SPS. Because dependencies occur only at the 
macro level between products T, Q0, and U, digit level 
parallelism can be fully applied within a phase without 
interruption by an intervening dependency. Furthermore, 
interphase dependencies can be broken down into digit level 
dependencies, which means that the start of the next phase can 
overlap with the completion of the prior phase. 

Fig. 3 illustrates the RMM digit multiplication and 
accumulation schedule for k = 2 and using a single digit 
multiplier (m = 1). Each row corresponds to a clock cycle. Digit 
products appear on the left. To the right of each digit product are 
the result digits that are being computed during that cycle. The 
third column lists, in italics, the result digits that have been fully 
computed in the previous cycles and are available in the 
accumulator. Finally, the clock cycle count is shown in the 
rightmost column. 

Fig. 3. Digit product scheduling for k = 2, m = 1. 

 
 

 



The figure shows the three phases in which the same 
hardware is reused: T in Cycles 0-3, Q0 in Cycles 4-6, and finally 
U in Cycles 7-10. For k = 2 and m = 1, computing the 
Montgomery product requires only 11 instead of 12 digit 
multiplications, or about 91.7%. 

Dividing operands into a larger number of smaller digits 
increases granularity, which permits eliminating a higher 
percentage of digit multiplications that would otherwise 
contribute to Q1. In the example above, a full product requires 
22 = 4 digit multiplications, while Q0 only requires 3, or 75%. In 
the overall scheme, the savings from reducing Q1 computations 
approaches 17% with increasing k. Employing a plurality of 
multipliers permits concurrent digit product scheduling for 
increased parallelism and lower latency. At the same time, the 
increased granularity afforded by digit multiplication to 
minimize Q0 computations remains. 

B. Architecture 
The proposed architecture consists of a four-stage pipeline 

with stages designated as Load (L), Multiply (M), Accumulate 
(A), and Final Sum. Partial products are computed in the first 
three stages, LMA. In Load, the input operands are selected and 
loaded into the digit multiplier input registers. In Multiply, the 
actual digit multiplication occurs and is written to the digit 
multiplier output register. Finally, in Accumulate, the digit 
partial product, with appropriate bit offset, is summed with the 
accumulator. Fig. 4 depicts a pipeline diagram of the LMA 
stages for k = 2, m = 1. 

Fig. 4. RMM pipeline for k = 2, m = 1. 

Fig. 5 depicts the microarchitecture. The Load stage consists 
of n-bit input registers A, B, M¢, and M, and selection logic. 
These registers and the output of the accumulator are 
multiplexed at the inputs to one or more digit multipliers, which 
comprise the Multiply stage. Each digit multiplier has two d-bit 
input registers X and Y and computes a 2d-bit digit product P in 
one clock cycle. This is the critical timing path of the entire 
design because of the large size of the digits. Next, Accumulate 
adds the digit products to the contents of the accumulator 
register ACCUM. Lastly, the Final Sum stage computes the 
reduction. This stage is only active after all the intermediate 
operands T, Q0, and U have been fully computed in the LMA 
pipeline. 

The accumulator data path is designed to minimize carry 
chain delays. As much as is practicable for a given (k, m) 
configuration, the same accumulation schedule is used for the 
three T, Q0, and U computation phases. This maximizes gate 
reuse and minimizes combinational area growth in the 
accumulator datapath. 

 

Fig. 5. Rescheduled Montgomery Multiplier architecture. 

V. RESULTS 
Several variants of the RMM architecture were designed, 

with a varying number of digits k, and of digit multipliers m. In 
all cases, the operand size n was set to 256, or to a nearby value 
to permit a split into k uniform digits each. k was varied from 2 
to 8. Depending on k, m was varied from 1 to 14. 

Other architectures were also designed for comparison 
purposes. At one end of size scale, the Eberle, Großschädl, and 
Tenca and Koç designs comprised the relatively small, intensely 
iterative realizations. At the other end, various designs that 
operate on full word-size operands were also built. These 
included a basic 256´256 synthesized multiplier, and variants 
(both fully parallel and pipelined versions) of the Montgomery 
algorithm realized directly in hardware. Other large designs that 
were implemented included a pipelined Karatsuba-Ofman 
multiplier [18] and a pipelined arithmetic processor proposed by 
McIvor, et al. in [19]. 

All designs were written in Verilog HDL and synthesized 
using Synopsys Design Compiler in the Nangate 45 nm research 
library [20]. Static timing analysis was performed with 
Synopsys PrimeTime. 

Fig. 6 plots latency versus area for all RMM 
implementations. The Pareto frontier for area-latency tradeoff is 
indicated. 

Fig. 6. RMM latency versus area with Pareto frontier. 

Table VI summarizes the results for RMM instances which 
lie on the Pareto frontier of the latency-area plot, ordered by 
area. 

 

 

 



TABLE VI.  RMM RESULTS (PARETO FRONTIER) 

d (k, m) Area 
(µm2) 

Per. 
(ns) 

f 
(MHz) 

# 
Cyc. 

Total 
Latency 

(ns) 

A×L 
Prod. 

86 (3, 1) 66.4k 1.969 508 28 55.1 3.66 
64 (4, 2) 76.9k 1.910 524 25 47.8 3.67 
64 (4, 3) 102.0k 1.881 532 19 35.7 3.64 

128 (2, 1) 105.7k 2.217 451 15 33.3 3.52 
86 (3, 2) 114.6k 2.013 497 16 32.2 3.69 
52 (5, 5) 118.5k 1.794 557 17 30.5 3.61 
64 (4, 4) 120.6k 1.881 532 15 28.2 3.40 
37 (7, 10) 130.9k 1.625 615 17 27.6 3.62 
43 (6, 8) 132.0k 1.694 590 16 27.1 3.58 
32 (8, 13) 133.7k 1.547 646 17 26.3 3.52 
43 (6, 9) 137.6k 1.666 600 15 25.0 3.44 
64 (4, 5) 144.9k 1.904 525 13 24.8 3.59 
86 (3, 3) 146.1k 2.002 500 12 24.0 3.51 
43 (6, 10) 152.4k 1.677 596 14 23.5 3.58 

128 (2, 2) 188.4k 2.217 451 10 22.2 4.18 
 

Of course, increasing area generally purchases a reduction in 
latency. The trend is not monotonic, because other variables in 
the architecture and scheduling contribute to achievable 
performance, beyond aggregate area. This is evident from the 
variations in achievable latency in the central region of the plot. 
Between 110k µm2 and 145k µm2 there are 16 configurations 
that are not at Pareto minimum. 

For k Î {3, 4, 5}, configurations in which m = k have the 
lowest area-latency product for that k. For example, the RMM 
(4, 4) area-latency product is the minimum of all RMM (4, m) 
configurations, at 3.40. This implementation requires 121k µm2 
and has a latency of 28 ns. Considering other k = 4 
configurations, it is possible to reduce area to just over 100k µm2 
by switching to RMM (4, 3) for a 16% area reduction and 8 ns 
(29%) of additional latency. In the opposite direction, the (4, 5) 
configuration saves 3 ns (11%) of latency (speedup = 1.12) but 
at an additional area cost of over 20k µm2, 20% larger. For the 
smaller digit sizes in which the operands are subdivided into 6 
to 8 digits, the minimum area-latency product is achieved closer 
to m = 1.5k. For example, for k = 6, the minimum area-latency 
product of 3.44 is obtained configuration (6, 9). 

A few reasons for this shift include the following. As the 
digit size d decreases and the number of digits k increases, the 
number of digit multiplications increases quadratically relative 
to k. More digit multipliers are required to keep the number of 
cycles under control. RMM (5, 5) computes a result in 17 cycles 
of about 1.8 ns each in 118k µm2. For RMM (6, 6), although the 
clock period improves to about 1.7 ns, the number of cycles 
jumps to 20, an 18% increase, in an area of 114k µm2. RMM 
(5, 5) has 52´52´5 = 13,520 digit multiplication bits in flight, 
whereas RMM (6, 6) has 43´43´6 = 11,094 bits in flight. This 
is a lower degree of digit level parallelism. Conversely, RMM 
(6, 9) only requires 15 cycles (25 ns) in 138k µm2, because it has 
16,641 bits in flight in any given multiplication cycle. Increasing 
the number of multipliers with large digits is costly because 
those multipliers are relatively large. With small digits, adding 
another multiplier results in a marginal increase in area but 
improves performance by reducing cycles. 

The latency-area curves of Fig. 6 suggest that a point of 
diminishing returns has been reached with respect to further 

increases in k. Using an increasing number k of smaller digits 
becomes more costly relative to less complex designs, despite 
the fact that the smaller digits permit a higher granularity in 
computing Q0 more efficiently. The quadratic relationship of the 
number of digit multiplications to k means that m must also grow 
quadratically to keep cycle count down. Although the timing 
paths within the smaller digit multipliers are shorter, the 
accumulator logic complexity must grow to handle more 
vertically stacked digit products. 

Fig. 7 plots latency versus area for the serial architectures 
along with several configurations of the Rescheduled 
Montgomery Multiplier. 

Fig. 7. Latency versus area, serial architectures and RMM. 

The serial architectures are clustered near the left side of the 
plot with low areas and varied latencies, while the RMM 
architectures vary in size but all have very low latencies. The 
Eberle, Tenca and Koç, and Großschädl serial designs have 
areas on the order of 23k µm2 or less. The latencies of the Eberle 
and Tenca designs are over 400 ns, approaching 2,800 ns for the 
worst Eberle instance. Operating at the bit or digit level requires 
a substantial number of clock cycles, and this tends to 
overwhelm any performance benefit of reduced cycle time 
resulting from less complex logic. In contrast, the Großschädl 
architecture, while still small on the order of 20k µm2, has 
latencies all clustered just above 200 ns. The three 
configurations built compute the Montgomery product 
identically, and the only difference is the size of the final digit 
multiplier used for converting the carry save result to 
nonredundant form. This architecture gives the best 
performance for area among the serial designs, with area-latency 
products under 5. The RMM designs all have latencies on the 
order of 50 ns and less, but area varies widely. The smallest 
RMM is just over three times the size of the Großschädl 
architectures, but is five times as fast. Fig. 8 plots the results of 
all designs. The latency axis uses a logarithmic scale. 

 

 



 

Fig. 8. Latency versus area for implemented Montgomery multipliers. 

The plot shows the area versus latency points for all the 
architectures, along with two curves fit to those points. The 
dashed line is the curve fit for the points of the prior architectures 
but excludes the proposed Rescheduled Montgomery Multiplier 
results. It has a downward slope from the serial architectures to 
the full size architectures. The solid line shows the curve fit to 
all points, including the RMM architectures. The RMM 
latencies fall well below the original, dashed curve fit. Within 
the context of the architectures that were implemented, it 
suggests that the RMM establishes a new minimum on the 
Pareto frontier of the latency-area plot. 

VI. CONCLUSIONS 
This research presents the Extended Serial Montgomery 

Model, a fundamental expansion of an established taxonomy for 
categorizing serial realizations of the Montgomery algorithm. 
The extension adds comprehension of digit level parallelism; it 
permits the designer to assess the performance and area effects 
of employing a variable degree of digit level parallelism in an 
otherwise serial architecture. It also augments the prior 
taxonomy with a new type of digit scheduling termed Separated 
Product Scheduling (SPS). Finally, it provides expressions to 
estimate performance by accounting for the number of digit 
multiplications, dependency relationships, and the number of 
digit multipliers. 

A novel hardware architecture for Montgomery 
multiplication, termed the Rescheduled Montgomery Multiplier 
(RMM), is presented. The architecture synthesizes techniques 
from multiple sources. It borrows the concept of digit 
multiplication from serial approaches, and augments it by 
exploiting digit level parallelism to compute multiple digit 
products concurrently. Employing the novel SPS approach, it 
orders digit multiplications to simplify the dependency chain 
and to minimize stalls and resource underutilization. The digit-
centric approach allows it to exploit opportunities in the 
canonical Montgomery algorithm to eliminate unnecessary 
computation. This brings two benefits: reducing the number of 
digit multiplications that must be performed, and permitting 
opportunistic deferral of some digit multiplications until later in 
the process. Moreover, it permits a greater degree of 

parallelization, and a wider range of parallelization options, than 
are available to prior serial architectures. 

The RMM establishes a new region of possible area-latency 
tradeoffs between, on the one hand, small digit- or bit-oriented 
serial architectures, and large word-size architectures that 
perform the canonical Montgomery algorithm in a more 
conventional way. 
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